Second-Order Separation of Multidimensional Sources with Constrained Mixing System
نویسنده
چکیده
The case of sources that generate multidimensional signals, filling a subspace of dimensionality K, is considered. Different coordinate axes of the subspace (“subspace channels”) correspond to different signal portions generated by each source, e.g., data from different spectral bands or different modalities may be assigned to different subspace channels. The mixing system that generates observed signals from the underlying sources is modeled as superimposing within each subspace channel the contributions of the different sources. This mixing system is constrained as it allows no mixing of data that occurs in different subspace channels. An algorithm based on second order statistics is given which leads to a solution in closed form for the separating system. Correlations across different subspace channels are utilized by the algorithm, whereas properties such as higher-order statistics or spectral characteristics within subspace channels are not considered. A permutation problem of aligning different sources’ subspace channels is solved based on ordering of eigenvalues derived from the separating system. Effectiveness of the algorithm is demonstrated by application to multidimensional temporally i.i.d. Gaussian signals.
منابع مشابه
Blind Separation of Jointly Stationary Correlated Sources
The separation of unobserved sources from mixed observed data is a fundamental signal processing problem. Most of the proposed techniques for solving this problem rely on independence or at least uncorrelation assumption for source signals. This paper introduces a technique for cases that source signals are correlated with each other. The method uses Wold decomposition principle for extracting ...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کاملChalmers University of Technology G Oteborg Sweden on Signal Separation by Second Order Statistics on Signal Separation by Second Order Statistics
The problem of separating two or more uncorrelated signals from equally many observed mixtures is considered in this thesis. The observed signals are modeled as a sum of original signals ltered through linear lters. Various kinds of mixing lters are considered: Finite Impulse Response (FIR) and Auto Regressive Moving Average (ARMA), causal and non-causal, one and two-dimensional. A separation s...
متن کاملSeparation of Periodically Time-Varying Mixtures Using Second-Order Statistics
We address the problem of Blind Source Separation (BSS) in the context of instantaneous (memoryless) linear mixtures, where the unknown mixing coefficients are time varying, changing periodically in time. Such a mixing model is realistic, e.g., when considering a biological or physiological system where the mixing coefficients are affected by periodic processes like breathing, heart-beating etc...
متن کامل